principal components analysis application

In the data mining course of my master degree on Applied AI, one of the techniques used for reducing dimensionality in preparing the raw data to be mined is Principal Components Analysis (PCA) I’ve searched the web for applications of PCA and I’ve found out this interesting application:

Classifying Images of Facial Expression using a Gabor Wavelet Representation

Michael J. Lyons, Julien Budynek, Shigeru Akamatsu
ATR Human Information Processings Labs
2-2 Hikari-dai, Seika-cho, Soraku-gun, Kyoto, 619-0288, Japan


A method for the automatic classification of images of facial expression is proposed. The method uses a 2D Gabor wavelet representation and a linear discriminant classification scheme. Use of this representation relaxes the requirement for full normalization of the face. The algorithm is tested on two distinct databases of the fundamental facial expressions. We present results on the performance of the system, provide a visual interpretation of the discriminant vectors, and discuss the relevance of the findings to psychological studies of facial expression.



Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de

Estás comentando usando tu cuenta de Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s